ЛЯЙСТЕР Астро Сварочный автомат горячего клина

Области применения

ЛЯЙСТЕР Астро – это сварочный автомат горячего клина для сварки внахлест гидроизолярующих покрытий и геомембран при строительстве подземных и гидросооружений.

- Термопластичные гидроизолирцющие покрытия: полиэтилен высокого давления ПЭВД полиэтилен низкого давления ПЭНД хлорированный полиэтилен ПЭ-Х полипропилен ПП

- **Форма шва**Шов в соответствии с DVS2225, часть I. При необходимости возможно изготовление других размеров.

Указания по безопасности

ВНИМАНИЕ

- Перед демонтажом аппарата не забудьте отключить его от сети.
- При использовании автомата не по назначению существует опасностьпожара.

- Опасность получения ожога! Не касайтесь горячей сварочной насадки! Дайте аппарату остыть! Не направляйте горячий воздух на людей и животных!

- Подключайте аппарат только к розетке с проводом заземления. Любой обрыв в проводе заземления внутри аппарата или снаружи представляет опасность! Используйте только удлинительный кабель с проводом заземления!

- Перед подключением аппарата к сети напряжения проверьте соответствие величины напряжения в сети напряжению, необходимому для аппарата.

- Требуется автомат-выключатель для персональной защиты при включении прибора на строительной площадке.

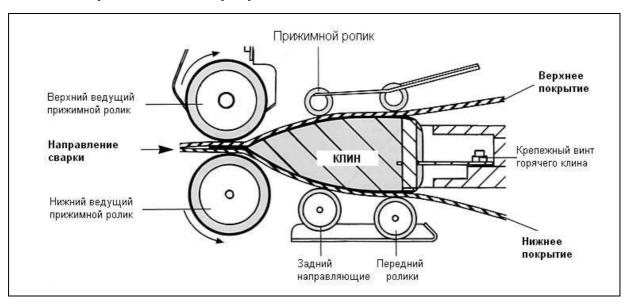
- Не оставляйте работающий аппарат без присмотра

- Не допускайте попадания воды и сырости на аппарат.

Знаки сертификации

Технические характеристики

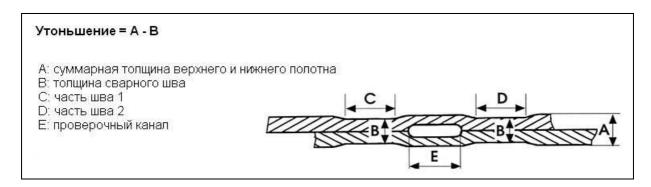
Класс электрозащиты - І

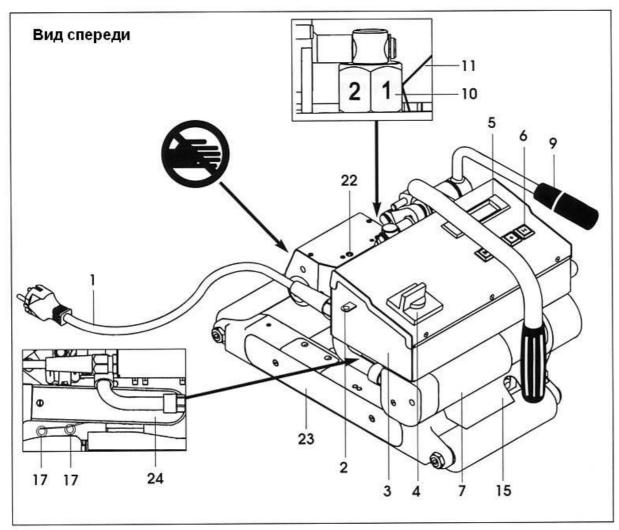

Напряжение	В	120,200,230*
Частота тока	Гц	50/60
Мощность	Вт	1800
Температура	°C	макс. 420
Давление на шов	Н	макс.1500
Скорость	м/мин	0.8-5.0
Ширина нахлеста	ММ	макс.150
Толщина материала	ММ	1.5-3.0
Уровень шума	дБ	70
Размеры	ММ	475x355x315 с рукояткой для
		транспортировки/направляющей
		рукояткой (12)
Bec	КГ	23

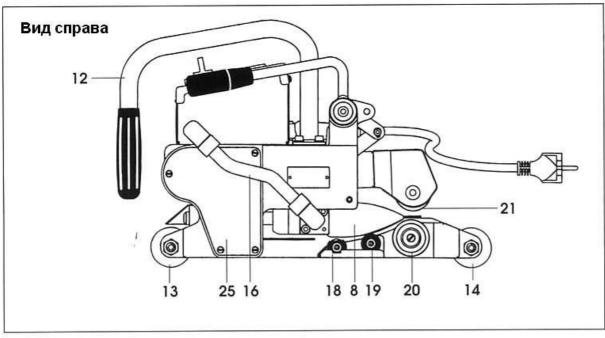
^{*} Напряжение питания не регулируется.

ОПИСАНИЕ

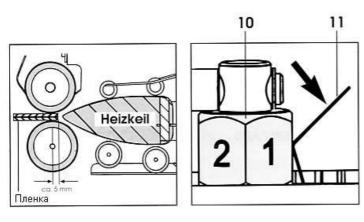
- Система нагрева ⇒ температура клина плавно регулируется электроникой. Горячий клин имеет плавающее расположение – в зависимости от толщины материала положение клина может плавно меняться.

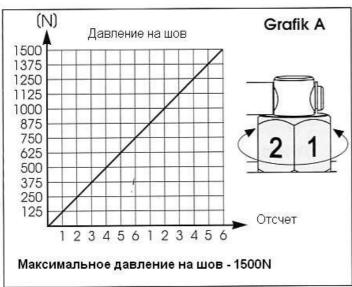

Система горячего клина в разрезе


- Давление на материал ⇒давление плавно выставляется. Передача давление осуществляется через коленчатый рычаг на прижимные ролики. Маятниковая головка гарантирует равномерное утоньшение обеих частей шва (Си D), а также шва без проверочного канала.


Данная конструкция обеспечивает удобную сварку Т-образных стыков. Во время процесса сварки давление на шов линейно изменяется в зависимости от изменения толщины свариваемого полотна.

Сварочный шов в нахлест в разрезе:


- **Привод**⇒скорость регулируется электронно, шаг регулировки — 0,1 м/мин. Имеется цифровой указатель реального и заданного значения скорости. Передача усилия осуществляется через трехступенчатый планетарный редуктор.



1. Сетевой кабель	14. Задний ходовой ролик
2. Держатель для кабеля	15. Направляющая пластина
3. Корпус блока электроники	16. Шланг с проводкой к горячему клину
4. Главный выключатель	17. Прижимной ролик
5. Дисплей	18. Передний направляющий ролик
6. Клавиатура	19. Задний направляющий ролик
7. Двигатель/редуктор	20. Нижний прижимной ведущий ролик
8. Горячий клин	21. Верхний прижимной ведущий ролик
9. Рычаг зажима материала	22. Регулировочный винт маятниковой
	головки
10. Регулировочная гайка выставления	23. Защитная крышка для цепи (шасси)
давления на материал	
11. Фиксирующая пружина	24. Защитная крышка для цепи
регулировочной гайки	(зажимной рычаг)
12. Рукоятка для	25. Защитная крышка цепи (редуктор)
транспортировки/направляющая	
рукоятка	
13. Передний ходовой ролик	

Параметры сварки

Давление на материал

Установить автомат в рабочее положение так, чтобы ок. 5 мм свариваемых полотен проходили между роликами. Зажимной рычаг (9) опустить до фиксации. Горячий клин автоматически выдвигается вперед. Фиксирующую пружину (11) нажать и удерживать. Путем поворачивания регулировочной гайки (10) установить прижимные ведущие ролики (20/21) так, чтобы они слегка сжимали полотна. Отжать фиксирующую пружину (11), поднять рычаг (9). Нажать фиксирующую пружину (11) и удерживать. Величину давления на материал установить путем поворачивания регулировочной гайки (10) в соответствии с графиком А. Отжать фиксирующую пружину, когда сила давления на материал совпадает с нужной. Внимание: в случае превышения макс. давления на материал 1500 Н возможны механические повреждения.

Температура сварки

Температура сварки задается клавишами "**H**", "-" и "+". Температура сварки зависит от материала и температуры окружающей среды. Установленной заданное значение отображается на дисплее. При одновременном нажатии клавиш "**H**" и "+" начинается нагрев. Время нагрева до заданной температуры ок. 5 мин.

Скорость сварки

Скорость сварки задается в зависимости от материала и условий внешней среды при помощи клавиш – и +. Установленная заданная скорость отображается на дисплее.

СВАРКА

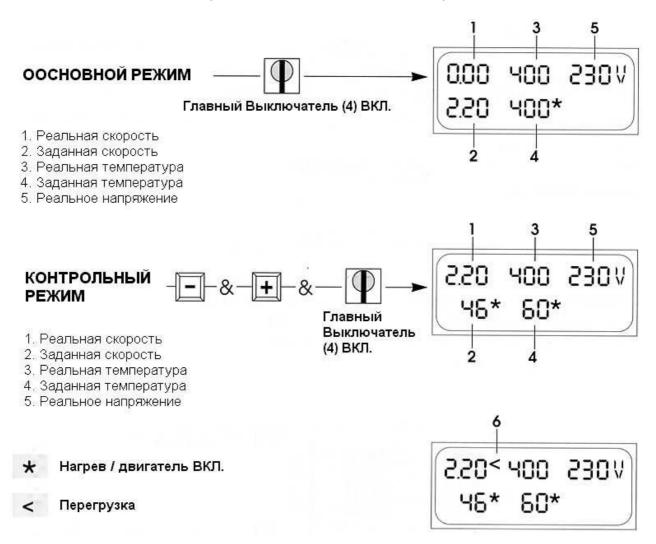
Подготовка

- Укладка материала Ширина нахлеста 80-130 мм

Материал между нахлестом, а также с верхней и нижней

сторон долежн быть чистым.

- Электроснабжение мин. 3 кВт (генератор), наличие автомата-выключателя


- Удлинительный

кабель мин. сечение кабеля должно соответствовать таблице

200 - 230 B – до 50м до 100м 3x2.5 мм² 120 В до 50м до 100м 3x1.5 мм² 3x2.5 мм²

Подготовка автомата

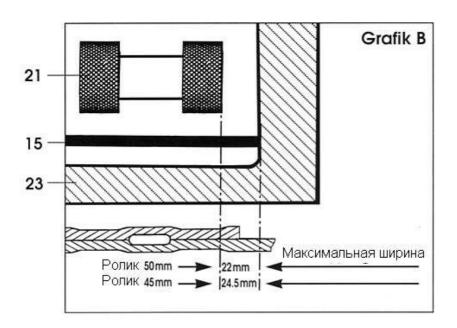
- Подключите автомат к сети
- Включите автомат в режиме «Основной» или «Контрольный»

Контроль процесса сварки и определение неисправностей по показателям потребляемой мощности

Показатель 4	Неисправность нагрева – причина (после разогрева)	
100%	Недостаточный уровень напряжения	

Показатель 2	6	Неисправности привода - причина
100%		Недостаточный уровень напряжения
100% или	<	Слишком большой нахлест полотен материала
100% или	<	Ведущие прижимные ролики (20/21)
		загрязнены
100% или	<	Макс. уровень давления (1500 Н) превышен
100% или	<	Высокая скорость сварки при больших
		нагрузках (например, Т-шов, крепежная
		канавка)

В случае появления сообщения об ошибке свяжитесь с сервисным центром.

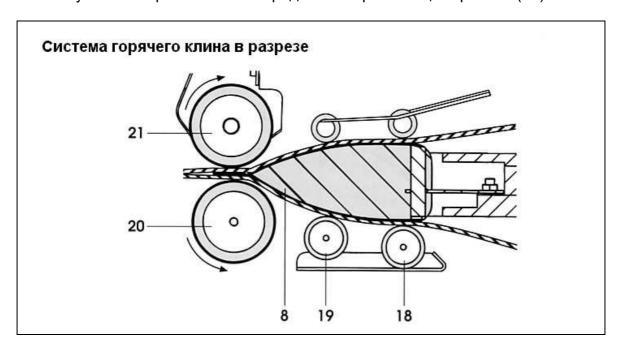

Процесс сварки

Проверка: - Ведущие прижимные ролики (20/21) и горячий клин (8) перед началом сварки должны быть чистыми.

- Проверьте длину кабеля/закрепление кабеля
- Выставьте параметры сварки, см. стр. 5/6.
- Должна быть достигнута температура сварки.
- Сварочный автомат установить в рабочее положение и позиционировать на материале.
- Двигатель включить клавишей "M".
- Зажимной рычаг (9) опустить до фиксации.

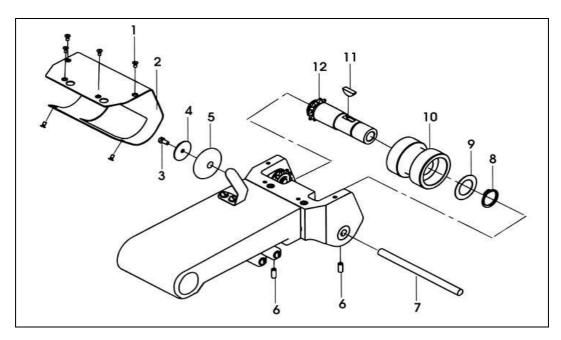
Сварка началась

- Проверяйте получаемый сварной шов(наплыв/утоньшение шва). В случае необходимости подкорректируйте скорость сварки при помощи клавиш "-" и "+".
- За рукоятку (12) ведите автомат вдоль нахлеста полотен так, чтобы ширина остатка верхнего полотна не превышала 22 мм (см. график В).



Завершение сварки

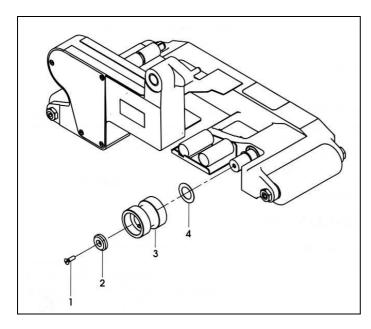
- за 1 см до конца шва поднимите рычаг (9).
- Выключите двигатель клавишей (6). Нагрев выключить одновременным нажатием клавиш "**H**" и "**+**".


Регулировка направляющих роликов под различную толщину материала

- Установить автомат на свариваемом материале в рабочее положение и позиционировать.
- Зажимной рычаг (9) опустить до фиксации.
- Шестигранный винт заднего направляющего ролика (19) ослабить.
- Расстояние между горячим клином (8) и задним направляющим роликом (19) должно равняться толщине материала, острие горячего клина должна располагаться по центру по отношению к обоим прижимным роликам (20/21).
- Затянуть шестигранный винт заднего направляющего ролика (19).
- Ослабить шестигранный винт переднего направляющего ролика (18).
- Расстояние между горячим клином (8) и передним направляющим роликом (18) должно составлять ок. 1 мм.
- Затянуть шестигранный винт переднего направляющего ролика (18).

Переоборудование верхнего ведущего прижимного ролика

Автомат **ЛЯЙСТЕР Астро** изготовляет различные швы в нахлест, разница между швами заключается в ширине сварного шва и ширине проверочного канала. Также возможно изготовление швов без проверочного канала. Для изготовления различных швов следует использовать соответствующие ведущие прижимные ролики.



- 1. Винт М3х6
- 2. Защитная пластина
- 3. Цилиндрический винт М4х8
- 4. Шайба 4.2х25
- 5. Скользящий ролик
- 6. Резьбовой штифт М5х12

- 7. Ось 8х118,5
- 8. Предохранительное кольцо (вал 20)
- 9. Распорная шайба 20х32х0,5
- 10. Ведущий прижимной ролик
- 11. Сегментная шпонка 5х6.5
- 12. Приводной вал

Демонтаж ведущих прижимных роликов в последовательности 1-12. Монтаж ведущих прижимных роликов в последовательности 12-1.

Переоборудование нижнего ведущего прижимного ролика

- 1. Винт М5х16
- 2. Прижимная шайба.
- 3. Ведущий прижимной ролик.
- 4. Распорная шайба 20х32х0.5

Демонтаж ведущих прижимных роликов в последовательности 1-4. Монтаж ведущих прижимных роликов в последовательности 4-1.

Принадлежности

Допустимо использование только оригинальных принадлежностей, изготовленных фирмой ЛЯЙСТЕР.

Обслуживание

- Проверять сетевой кабель (1) и штекер на наличие электрических и механических повреждений.
- Горячий клин (8) чистить медной щеткой.
- Ведущие прижимные ролики (20/21) чистить проволочной щеткой.
- В случае необходимости цепи смазать спреем (защитная крышка цепи23/24).
- Проверять ролики (13/14/17/18/19).

Сервис и ремонт

- При появлении на дисплее (5) сообщения "maintenance; servicing" отправьте автомат в сервисный центр на проверку.
- Ремонт автомата осуществляется только в авторизованной сервисном центре.

Гарантийные условия

- Условия гарантии и ответственности изложены в прилагающемся к автомату гарантийном талоне.
- Действие всех гарантийных обязательств прекращается, если автомат подвергся любой переделке/доработке и не находится в оригинальном состоянии.